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The Z-selective formation of �-fluoro-�,�-unsaturated
esters was achieved using the deselenenic acid of the syn-
and/or anti-3-aryl-2-fluoro-3-hydroxy-2-organoselanylacetates
3 and 4 with trifluoromethanesulfonic acid. In contrast, the 3-
alkyl-substituted propanoates 3f and 4b stereospecifically under-
went alkenylation to give the (E)- or (Z)-�-fluoro-�,�-unstau-
rated esters 5f. We were also successful in the one-pot alkenyla-
tion reactions.

�-Fluoro-�,�-unsaturated esters are novel building blocks
for biologically active compounds, agrochemicals, and poly-
mers.1 The main synthetic routes for the �-fluoro-�,�-unsaturat-
ed esters are the Wittig and Horner–Wadsworth–Emmons
(HWE) reactions. However, the Z-selective HWE reactions are
quite limited.2 Nagao et al. reported a modified method for the
�-fluoro-�,�-unsaturated esters as an alternative route.3

While the �-organosulfanyl, sulfinyl, and sulfonyl �-fluoro-
acetic acid esters are widely used for the synthesis of �-fluoro-
�,�-unsaturated esters,4 �-fluoroalkenes,5 �,�-difluoroacetic
acid esters,6 and 2-fluoroallylic alcohols,7 in contrast, the �-
organoselanylacetic esters are quite limited.8,9 Previously, we
have explored a new field in synthetic organic chemistry using
�-alkoxyalkenyl lithiums.10 The addition reactions of alkenyl
lithiums with aldehydes and ketones, and the successive hydrol-
ysis afford the corresponding types of alkenes. This two-step
procedure using the carbanion of the �-fluoro-�-organoselanyl-
acetic acid esters would be expected to give the �-fluoro-�,�-
unsaturated esters because the treatment of the �-hydroxy-�-
organoselanylalkanes with acids is well-known to afford the
alkenes by removal of the organoselenenic acid (RSeOH).11

We have investigated the synthetic utilization using �-fluoro-
�-organoselanylacetic acid esters, and the transformation of
the �-fluoro-�-hydroxy-�-organoselanylalkanes was found to
form the corresponding �-fluoroalkenes. Herein, we report the
Z-selective synthetic methods of the �-fluoro-�,�-unsaturated
esters (Scheme 1).

We first prepared the �-fluoro-�-phenylselanyl and �-butyl-
selanylacetic acid ethyl esters 1 (82%) and 2 (54%) by the usual
method from the commercially available chlorofluoroacetic acid
ethyl ester and the corresponding diorganyl diselenides/NaBH4

in EtOH. Next, we performed the lithiation and reaction with
benzaldehyde with the normal amide bases such as LDA or lithi-

um 2,2,6,6-tetramethylpiperidide (LTMP). The corresponding
alcohol 3a was obtained in almost the same yields as both the
syn and anti diastereomers (syn:anti = 64:36).12 The relative
configuration of each isomer was determined by X-ray analysis
(Figure 1).13 The reactions with some aldehydes and ketones
provided the alcohols 3b–3j and 4a and 4b as shown in Table 1.

The treatment of 3a with trifluoromethanesulfonic acid in
1,2-dichloroethane gave the �,�-unsaturated ester 5a, accompa-
nied by diphenyl diselenide. The stereochemistry of the ethyl
(Z)-2-fluorocinnamate (5a) was confirmed on the basis of the
coupling constant of the product.14 When p-toluenesulfonic acid
was used as the acid, the product was obtained in 53% yield as a
mixture of the diastereomers (E:Z = 47:53). We reexamined the
formation of the double bond in each isomer; however, the same
product 5a was obtained from the syn- or anti-alcohols 3a. The
dehydration reactions of some alcohols were examined using
almost the same procedure, and these results are shown in
Table 2. The reactions of the 3-aryl-3b–3d and 3-styryl-3-
hydroxyacetates 3e exclusively provided the (Z)-�-fluoro-�,�-
unsaturated esters 5b–5e (Entries 3–8). The reaction of 3c with
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Scheme 1. �-Fluoroalkenylation using �-fluoro-�-organosel-
anylacetates. Figure 1.

Table 1. Synthesis of ethyl 2-fluoro-3-hydroxy-2-(organosel-
anyl)alkanoates 3–4
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F
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1) LTMP(2equiv.)/-78 oC

2) R2COR3
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1-2 3-4

Entry R1 R2 R3 Yield (syn:anti)

1 Ph Ph H 3a (69; 64:36)

2 Ph 2,4,6-Me3C6H2 H 3b (60; 72:16)

3 Ph 4-MeOC6H4 H 3c (66; 58:42)

4 Ph 4-ClC6H4 H 3d (63; 41:59)

5 Ph (E)-PhCH=CH H 3e (53; 55:45)

6 Ph PhCH2CH2 H 3f (36; 58:42)

7 Ph (CH2)5 3g (68)

8 Ph (CH2)4 3h (61)

9 Ph (CH2)2CHPh(CH2)2 3i (99)

10 Ph CH=CH(CH2)3 3j (50; 68:32)

11 n-Bu 4-MeOC6H4 H 4a (51; 57:43)

12 n-Bu PhCH2CH2 H 4b (72; 64:36)
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methyl trifluoromethanesulfonate/triethylamine (Method B)
also afforded the alkene 5c in good yield (Entry 4). The yield
of diphenyl diselenide was found to be lower than that of the
�,�-unsaturated esters; however, we could not understand the
reasons for it. The reaction of the alkyl (R2 = CH2CH2Ph;
R3 = H) substituted alcohol 3f did not proceed at room temper-
ature; however, the reaction at 83 �C stereospecifically proceed-
ed to give the (E)- or (Z)-alkene 5f in high yields (Entries 9 and
10). The alkenylation of the butylselanyl derivative 4b also
succeeded (Entries 16 and 17). We also examined the Lewis
acid-catalyzed alkenylation of the 3-hydroxy-2-phenylselanyl-
propanoate 3d which succeeded under the following conditions:
scandium triflate (0.05mol) in ClCH2CH2Cl at room tempera-
ture (Method C, Entry 7). Overall, the stereoselectivities of the
�,�-unsaturated esters were excellent; however, the yields of
the products were not satisfactory because the alkenylation
process consisted of stepwise procedures. We then examined
the one-pot reaction as a modified method of the alkenylation
step including the addition reaction of the carbanion with
aldehydes or ketones and the removal of the benzeneselenenic
acid (Scheme 2).

After the addition of the corresponding aldehyde or ketone,

the reaction mixture was treated with some acids. Excellent
yields and stereoselectivities were obtained using methanesul-
fonyl chloride at �78 �C. Especially, the 2,4,6-trimethylphenyl
derivative was obtained in excellent yield. The excellent Z-
selectivity of the reactions would be considered as shown in
Figure 2. The dehydration of the 3-aryl-3-hydroxypropanoate
with acid gives the cationic intermediate 6, which is stabilized
by the organoselanyl group through a bridged intermediate 7.
The 3-aryl intermediate 6 should be further stabilized by the aryl
group, therefore, the extrusion of the selanyl moiety would be
very slow and proceed via the preferred cis-7, which minimizes
the steric interactions. On the other hand, the stereospecificity
during the formation of the double bond in the reactions of the
3-alkyl derivatives 3f and 4b would proceed with retention of
its stereochemistry without the equilibrium like 6 because the
corresponding cationic intermediates would be less stable than
the aromatic 6.
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Table 2. Synthesis of ethyl 2-fluoroalkanoates with acids

R2
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OH

F
SeR1
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condition R2

R3

F

CO2Et + (R1Se)2

3-4 5

Entry Alcohol
Condition Yield/% Yield/%

Method/temp and time 5 (Z:E) (R1Se)2
a

1 s-3a A/rt/10min 5a (74)(99:1) (71)

2 a-3a A/rt/10min 5a (85)(99:1) (71)

3 s- and a-3b A/rt/10min 5b (99)(99:1) (31)

4 s- and a-3c B 5c (75)(99:1) (46)

5 s-3d A/rt/10min 5d (63)(99:1) (49)

6 a-3d A/rt/10min 5d (84)(99:1) (54)

7 s-3d C 5d (70)(99:1) (17)

8 3e A/0 �C/10min 5e (35)(99:1) (50)

9 s-3f A/83 �C/10min 5f (71)(1:99) (93)

10 a-3f A/83 �C/10min 5f (99)(99:1) (13)

11 3g A/0 �C/50min 5g (77) (—)

12 3h A/0 �C/10min 5h (59) (70)

13 3i A/rt/10min 5i (47) (45)

14 3j A/0 �C/10min 5j (18) (32)

15 s- and a-4a A/0 �C/10min 5c (51) (—)

16 s-4b A/83 �C/10min 5f (42)(1:99) (—)

17 a-4b A/83 �C/10min 5f (42)(99:1) (—)

Method A: CF3SO3H(2.0 equiv.)/Cl(CH2)2Cl; Method B: CF3SO3Me(2

equiv.)/NEt3(3 equiv.)/DMF/rt/10min; Method C: Sc(OTf)3/(0.05

equiv.)/Cl(CH2)2Cl/rt/5min; aThe yield of diphenyl diselenide was

confirmed by the starting alcohol 3 or 4.
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Scheme 2. One pot synthesis of �-fluoro-�-hydroxy-�-organo-
selenanylalkanoates.
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